Hydrodynamics / Supernova explosions

A core-collapse supernova occurs when the Fe core of a massive star collapses

"Onion skin" model

Arnett SN text (1996)

This launches a powerful shock

At shock breakout, we see the SN

M_/M₀

12

16

Observations from SN1987A suggest strong mixing of the radioactive core into the envelope

- Core vel's still underpredicted
- *"Input" or "output" problem?
- Experiments can answer this

Experiments relevant to the hydrodynamics of corecollapse SNe have been done on the Nova laser

Sets of gated x-ray pinhole
Separate laser beams generate
hard x-rays for backlighting

Supernova explosion hydrodynamics at intermediate times obeys a scale transformation

• The dynamics are described by Euler's Eqs. ("pure hydro"); viscous dissipation, heat transport can be neglected (Re >> 10⁴, Pe >> 1)

Conservation of mass:
$$\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho v) = 0$$

Conservation of momentum:
$$\frac{\partial v}{\partial t} + (v \bullet \nabla)v = -\frac{\nabla p}{\rho}$$

Conservation of entropy:
$$\frac{\partial p}{\partial t} - \gamma_a \frac{p}{\rho} \frac{\partial \rho}{\partial t} + v \bullet \nabla p - \gamma_a \frac{p}{\rho} v \bullet \nabla \rho = 0$$

Euler's Eqs. are invariant under this scale transformation:

D. Ryutov et al., Ap. J. <u>518</u>, 821 (1999)

Supernova experiments that are more "star-like" are being developed on the Omega laser

More "star-like":

- 3-layers
- Divergent geometry
 - cylindrical
 - spherical

See Robey (RP1.95), Hurricane (RP1.95), Kane (RP1.94)

Experiments relevant to the mixing in SN explosions were conducted on the Phebus laser

